
Impluse-free output regulation of singular nonlinear systems

JIE HUANG² § and JI-FENG ZHANG² ³

This paper addresses the output regulation problem for the class of singular non-
linear systems. A generalized version of the centre manifold theorem that applies to
singular nonlinear systems is established ® rst. Then necessary and su� cient con-
ditions are given for the solvability of the output regulation problem. The work
extends the existing results of output regulation problem for singular linear systems
or normal nonlinear systems to the singular nonlinear systems.

1. Introduction

Singular systems are dynamical systems whose behaviours are governed by both
di� erential equations and algebraic equations. Such systems arise in electrical net-
works, power systems, large-scale systems, etc. Over the past two decades, there has
been extensive study on singular systems encompassing such issues as solvability
(Aplevich 1981, Campbell and Griepentrog 1995), controllability and observability
(Campbell 1980, Verghese et al. 1981, Yip and Sincovec 1981, Cobb 1984, Lewis
1985, 1986, Dai 1989), pole assignment and the elimination of impulsive behaviour
(Cobb 1981, Cheng and Zhang 1986, Dai 1989), LQG control (Pandol® 1981, Cobb
1983, Bender and Laub 1987 a, b, Cheng et al. 1988, Jonckheere 1988), output reg-
ulation (Lin and Dai 1996), and input± output decoupling (Cheng and Zhang 1986,
Liu et al. 1996), to name just a few. Such e� orts not only have extended a substantial
portion of the research results on normal systems to this more general class of
dynamic systems, but also led to many practical applications involving economics
(Luenberger 1977a, b), power systems (Hill and Mareels 1990), robot control
(McClamroch and Wang 1988) and so on.

In this paper, we will study an output regulation problem for singular nonlinear
systems. Roughly, by output regulation problem, we mean the design of control laws
for a plant so that the output of the closed-loop system is able to asymptotically
track a class of reference inputs and reject a class of disturbances. Both the disturb-
ance and reference are generated by an autonomous di� erential equation termed
exosystem. This problem was ® rst studied in the 1970s for the class of normal linear
systems in the form of a servomechanism problem or output regulation problem
(Davison 1976, Francis and Wonham 1976, Francis 1977). The same problem for the
normal nonlinear systems has also been pursued since the late 1980s (Isidori and
Byrnes 1990, Huang and Rugh 1990, 1992). In particular, the work of Isidori and
Byrnes in their award-winning paper (Isidori and Byrnes 1990) has led to the dis-
covery of the salient regulator equations that have become the cornerstone for the
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study of nonlinear output regulation problems. The study of this problem for sin-
gular systems, however, has long been limited to the class of linear systems (Dai
1989, Lin and Dai 1996), and it was only recently that a clear-cut solution was
obtained by Lin and Dai (1996).

Inspired mainly by the work of Isidori and Byrnes (1990) and Lin and Dai (1996),
we have tried to tackle the output regulation problem for singular nonlinear systems.
The outcome of our research has led to the present paper. The highlight of our
research along with the organization of the rest of this paper is given as follows.
In §2, we present a precise formulation of the output regulation problem for the
singular nonlinear systems in such a way that it is general enough to include the
output regulation problem for linear singular systems or normal nonlinear systems as
a special case, and yet tight enough to be able to eliminate, in the resulting closed-
loop system, the annoying impulsive behaviour. In §3, we will establish a generalized
version of the centre manifold theorem that applies to singular nonlinear systems.
This generalization, in addition to laying down the foundation for studying the
output regulation problem for singular nonlinear systems, exhibits an important
property of singular nonlinear systems, namely, the time response of a singular
nonlinear system is impulse-free provided the linearization of the singular nonlinear
system is strongly stable. Armed with the generalized version of the centre manifold
theorem, we establish, in §4, the solvability conditions of our problem under either
state feedback or singular output feedback. It turns out that the solvability of the
output regulation problem is tied to the solvability of a set of singular partial di� er-
ential equations and algebraic equations that can be viewed as the singular analogue
of the regulator equations associated with normal nonlinear systems (Isidori and
Byrnes 1990). In §5, we further address the important issue of looking for normal
output feedback control to achieve output regulation in singular nonlinear systems.
This issue is interesting since it is di� cult to realize a singular controller physically.
Section 6 presents a result that leads to an approximation method for solving the
singular regulator equations. Section 7 closes this paper with some remarks.

2. Problem Formulation

Consider the plant described by

E Çx(t) = f (x(t),u(t),w(t) ), x(0) = x0

e(t) = h(x(t),w(t) ), t ³ 0
(1)

and an exosystem described by

Çw(t) = s(w(t) ), w(0) = w0 (2)

where x(t) Î R n is the plant state, u(t) Î R m the plant input, e(t) Î R p the plant
output representing the tracking error, w(t) Î R

q the exogenous signal representing
the disturbance and/or the reference input, and E Î R

ń n a singular constant matrix.
We will focus on two classes of control laws, namely,

(1) State feedback control described by

u(t) = k(x(t),w(t) ) (3)

and
(2) Output feedback control described by

790 J. Huang and J.-F. Zhang



u(t) = b (z(t),e(t) )

Ez Çz(t) = g(z(t),e(t) )
(4)

where z(t) is the compensator state vector of dimension nz to be speci® ed
later, and Ez Î R nc ´ nc is constant.

Equation (4) is said to be a normal controller if Ez is an identity matrix. The
closed-loop system composed of plant (1), (2) and control law (3) or (4) can be put
into the following form:

Ec Çxc (t) = fc (xc (t),w(t) ), xc (0) = xc0

Çw(t) = s(w(t) ), w(0) = w0

e(t) = hc (xc (t),w(t) )

(5)

where for the state feedback case, xc = x, Ec = E, fc (x,w) = f (x,k(x,w),w) , and
hc (xc,w) = h(x,w) , and for the output feedback case, xc = [x¿ z¿]¿ , and

Ec =
E 0
0 Ez

, fc (xc,w) =
f (x, b (z,h(x,w) ) ,w)

g(z,h(x,w) ) , hc (xc,w) = h(x,w)

(6)

For simplicity, all the functions involved in this setup are assumed to be su� -
ciently smooth and de® ned globally on the appropriate Euclidean spaces, with the
value zero at the respective origins. Our results will be stated locally in terms of an
open neighbourhood W of the origin in R

q, and we implicitly permit W to be made
smaller to accommodate subsequent local arguments. We denote the dimension of xc

by nc with the understanding that nc = n for the state feedback case and nc = n + nz

for the output feedback case.

Output regulation problem: Find a control law (state feedback or output feed-
back) such that the closed-loop system (5) has the following two properties:

R1: The linearization of

Ec Çxc = fc (xc,0) (7)

is strongly stable in the sense to be described in Remark 1.

R2: The trajectories starting from all su� ciently small initial state (xc0, w0)
satis® es

lim
t ® ¥ e(t) = lim

t ® ¥ hc (xc (t),w(t) ) = 0 (8)

Remark 1: Let the linearization of (7) be described by

Ec Çxc = Acxc (9)

Then (Ec,Ac) is said to be strongly stable if deg(det(sEc - Ac) ) = rank(Ec) , and
s (Ec,Ac) Î C- where s (Ec,Ac) 7{s|det(sEc - Ac) = 0} (Dai 1989). Clearly, when
Ec = I, those two requirements reduce to what were imposed on the output regula-
tion problem for the normal system as studied by Isidori and Byrnes (1990). On the
other hand, Requirement R1 is somehow stronger than its linear version studied by
Lin and Dai (1996) where only the closed-loop system stability, i.e. s (Ec,Ac) Î C- ,
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was required. This strengthening is made for both technical and practical considera-
tions. In terms of practicality, the additional condition deg(det(sEc - Ac) ) =
rank (Ec) guarantees, as will be made clear in Remark 3 later, that the response of
the closed-loop system (5) is impulse-free, a desirable property by all practical engin-
eering systems. In terms of technicality, requirement R1 guarantees, as will be shown
in Theorem 1, that the closed-loop system will induce a stable centre manifold at the
origin of Rnc+q that is crucial for the ful® lment of R2.

Many of our results will rely on the properties of the linear approximation of the
plant and the exosystem. Therefore, we introduce the notation

A = ¶ f
¶ x x=0,u=0,w=0

, B = ¶ f
¶ u x=0,u=0,w=0

, P = ¶ f
¶ w x=0,u=0,w=0

C = ¶ h
¶ x x=0,w=0

, Q = ¶ h
¶ w x=0,w=0

, S = ¶ s
¶ w w=0

Thus the linear approximation of the plant and the exosystem at the origin is
described by

E Çx = Ax + Bu + Pw,
e = Cx + Qw,
Çw = Sw,

(10)

where E,A Î R
ń n, B Î R

n ´ m , P Î R
n ´ q, C Î R

ṕ n, Q Î R
p ´ q, and S Î R

q ´ q.
Now we are ready to list the following hypotheses:

(H1): w = 0 is a stable equilibrium of the exosystem, and there exists a neighbor-
hood W in the origin of Rq with the property that each initial condition w0 Î W
is stable in the sense of Poisson.

(H2): (E,A,B) is strongly stabilizable, i.e. there exists a matrix K Î R m ´ n such
that (E,A + BK) is strongly stable.

(H3):

E 0

0 Iq
,

A P

0 S
, [C Q] is strongly detectable,

i.e. there exist matrices G1 Î R
n ´ p and G2 Î R

s ´ p such that

E 0

0 Iq
,

A P

0 S
-

G1

G2
[C Q] is strongly stable

Remark 2: Hypothesis (H1) is a standard assumption introduced by Isidori and
Byrnes in order to invoke the centre manifold theorem (Isidori and Byrnes 1990).
Hypotheses (H2) and (H3) are made to ensure the ful® lment of R1 by state feed-
back or output feedback. We note that Hypotheses (H2) and (H3) are somewhat
stronger than those used by Lin and Dai (1996) due to the enhancement of our re-
quirement R1 over the corresponding linear version as already commented in Re-
mark 1. Also, we note that, in the special case where E = I, Hypotheses (H2) and
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(H3) reduce to exactly the same ones assumed by Isidori and Byrnes for the out-
put regulation problem of the normal systems (Isidori and Byrnes 1990).

3. A generalized version of the centre manifold theorem

It is known that the centre manifold theorem plays a key role in solving the
output regulation problem for normal nonlinear systems (Isidori and Byrnes 1990).
In this section, we will establish a generalized version of the centre manifold theorem
that applies to the class of the singular nonlinear systems described by

Ec Çxc = fc (xc,w)

Çw = s(w)
(11)

Theorem 1: Consider the system (11). Assume H1, and suppose the linear approxi-
mation at the origin of Ec Çxc = fc (xc,0) is strongly stable. Then

(1) there exists a su� ciently smooth function xc (w) locally de® ned around the
origin of Rq satisfying xc (0) = 0, and

Ec
¶ xc (w)

¶ w
s(w) = fc (xc (w),w) (12)

(2) for all su� ciently small xc0 and w0, the solution of (11) denoted by (xc (t) , w(t) ) ,
is su� ciently smooth for all t > 0, and satis® es,

lim
t ® ¥ [xc (t) - xc (w(t) )]= 0 (13)

Proof: Part (1): Rewrite the system (11) into the form

Ec Çxc = Acxc + Bcw + u (xc,w) (14)

Çw = Sw + w (w) (15)

where u (xc,w) and w (w) vanish at their origins together with their ® rst-order deriva-
tives.

Assume rank(Ec) = r. Then there exist two nonsingular matrices M1 and M2

such that

M1EcM2 = Ir 0
0 0

where Ir denotes the r ´ r identity matrix. Let

A11 A12

A21 A22

= M1Ac M2, with A11 Î R
r ´ r

M1Bc 7[B¿

1 B¿

2]¿, with B1 Î R
ŕ q

xc = M- 1
2 xc 7[x¿

1 x¿
2]¿ with x1 Î R r

M1 u (x,w) 7[u ¿

1 (x1,x2,w) u
¿

2 (x1,x2,w)]¿ with u 1 Î R
r

Then, premultiplying by M1 both sides of (14) gives
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Çx1 = A11x1 + A12x2 + B1w + u 1 (x1,x2,w) (16)

0 = A21x1 + A22x2 + B2w + u 2 (x1,x2,w) (17)

where u 1 (x1,x2,0) and u 2 (x1,x2,0) vanish at (x1,x2) = 0 together with their ® rst-
order derivatives.

Notice that deg(det(sEc - Ac) ) = deg(det(M1 (sEc - Ac) M2) ) and

det M1 (sEc - Ac) M2( ) = det
sIr - A11 - A12

- A21 - A22
= det(- A22)s

r + b(s)

where b(s) is a polynomial in s of degree smaller than r. It follows from the assump-
tion deg(det(sEc - Ac) ) = rank (Ec) = r that det(- A22) /= 0. Thus, A22 is non-sin-
gular. By the Implicit Function Theorem, there exists a unique su� ciently smooth
function x2 = a (x1,w) satisfying a (0,0) = 0, and

0 = A21x1 + A22 a (x1,w) + B2w + u 2 (x1, a (x1,w),w) (18)

Furthermore,

¶ a (x1,w)
¶ x1 x1=0

w=0

= - A- 1
22 A21

Substitutingx2 = a (x1, w) into (16) gives

Çx1 = (A11 - A12A22A21)x1 + B1w + u 3 (x1,w) (19)

where u 3 (x1,0) vanishes at x1 = 0 with its ® rst-order derivatives.
By a straightforward calculation, we get

det(sEc - Ac) = det(M- 1
1 M- 1

2 ) ´det
sIr - A11 - A12

- A21 - A22

= det(M- 1
1 M- 1

2 ) det(- A22) det(sIr - (A11 - A12A- 1
22 A21) )

Thus A11 - A12A- 1
22 A21 is stable since by assumption s (Ec,Ac) Î C- .

Now consider the following normal system

Çx1 = f1 (x1,w) = (A11 - A12A22A21)x1 + B1w + u 3 (x1,w)

Çw = s(w)
(20)

Since all the eigenvalues of (A11 - A12A22A21) have negative real parts, and all the
eigenvalues of S have zero real parts by H1, by the centre manifold theorem (Carr
1981, Isidori and Byrne 1990), this system has a stable centre manifold locally
de® ned at the origin of Rr+q, or, what is the same, there exist a su� ciently smooth
function x1 = p (w) locally de® ned around the origin of Rq satisfying p (0) = 0, and is
such that

¶ p (w)
¶ w

s(w) = (A11 - A12A22A21) p (w) + B1w + u 3 ( p (w),w) (21)

Moreover, there exist positive constants M and s such that, for all su� ciently small
x1 (0) , and w0, the solution of (20) satis® es

||x1 (t) - p (w(t) )|| £ M e- s t||x1 (0) - p (w(0) )||, t ³ 0 (22)
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Let

xc (w) = M2
p (w)

a ( p (w),w)
(23)

Then it is ready to verify, using (18) and (21), that (23) satis® es (12).
Part (2): In terms of the solution of (20), we can de® ne

xc (t) =
M2

x1 (t)

a (x1 (t),w(t) )
, t > 0

xc0, t = 0

(24)

Clearly, for t > 0, xc (t) is su� ciently smooth and (xc (t),w(t) ) satis® es (11). More-
over,

lim
t ® ¥ [xc (t) - xc (w(t) )]

= M2

lim
t ® ¥

(x1 (t) - p (w(t) ) )

a lim
t ® ¥ x1 (t) - p (w(t) ) + p (w(t),w(t) ) - a ( p (w(t) ),w(t) )

= 0 (25)

since a ( ,́ )́ is continuous. h

Remark 3: It is known that the response of a strongly stable linear system is im-
pulse free. This nice property is also retained for the singular nonlinear system de-
scribed by (11) when the linearization of Ec Çxc = fc (xc,0) is strongly stable. This is
evident from the explicit expression given by (24). However, as opposed to the
normal system, the response xc (t) may be discontinuous at t = 0. The magnitude
of the discontinuity of xc (t) as given by (24) can be calculated as follows. Let

xc0 (0+) = lim
t ® 0+

xc (t)

and

M- 1
2 = G 1

G 2

where G 1 Î Rŕ nc . Then the magnitude of the discontinuity of xc (t) at t = 0 is

xc (0+) - xc0 = M2
0

a ( G 1xc0,w0) - G 2xc0

Remark 4: A geometric interpretation of Theorem 1 can be given as follows. Let
xa = [x¿

c w¿]¿, and rewrite system (11)

Ea Çxa =
fc (xc,w)

s(w)
7 fa (xa) (26)

where Ea = diag (Ec,Iq) . Then equations (12) and (2) are equivalent to

Ea
¶ xa (w)

¶ w
s(w) = fa (xa (w) ) (27)

Thus the manifold de® ned by xa (w) 7[xc (w)¿ w¿]¿ for w Î W is a locally invariant
manifold for the singular system (26). What is more, we can show that xa (w) is
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actually a centre manifold for the system (26) in a meaningful sense. In fact, denote
the Jacobian matrices of fa (xa) and xa (w) at their origins by Aa and Xa, respectively.
It is not di� cult to verify, by linearizing (27), that

EaXaS = AaXa (28)

Since s (Ea,Aa) = s (Ec,Ac) Ä s (Iq,S) , and the matrix S has only zero-real-part
eigenvalues, Xa is composed by those generalized eigenvectors of the pair (Ea,Aa)
that are associated with all those generalized eigenvalues of the pair (Ea,Aa) whose
real parts are zero. In other words, the eigenspace of (Ea,Aa) associated with the
eigenvalues of (Iq,S) is the tangent space to the manifold xa (w) at xa = 0. Thus, the
manifold xa (w) can be reasonably called as the local centre manifold of the system
(26) passing through xa = 0.

4. S olvability of the output regulation problem

We are now ready to tackle the solvability of the output regulation problem. We
begin by translating the requirement R2 into an algebraic constraint on the function
xc (w) de® ned in Theorem 1.

Lemma 1: Assume H1, and suppose there exists a control law (state or output
feedback) such that the closed-loop system (5) satis® es R1, then the closed-loop
system also satis® es R2 if and only if there exists a su� ciently smooth function
xc (w) locally de® ned in w Î W with xc (0) = 0 such that

Ec
¶ xc (w)

¶ w
s(w) = fc (xc (w),w) (29)

0 = hc (xc (w),w) (30)

Proof:

(Su� ciency) Assume (29) and (30) hold for some xc (w) . Then by Theorem 1, for
all su� ciently small xc0, and w0, the solution of (11) satis® es

lim
t ® ¥ [xc (t) - xc (w(t) )]= 0 (31)

It follows from the continuity of h(´, )́ as well as (30) and (31) that

lim
t ® ¥ e(t) = lim

t ® ¥ [hc (xc (t),w(t) ) - h(xc (w(t),w(t) ) )]= 0 (32)

(Necessity) Since the closed-loop system (5) satis® es R1, by Theorem 1, there
exists some su� ciently smooth function xc (w) for w Î W with xc (0) = 0 satisfying
(29). We need to show that satisfaction of R2 by the closed-loop system (5) implies
that the function xc (w) satis® es (30). In fact, with the notation used in the proof of
Theorem 1, we can de® ne a normal system as

Çx1 = (A11 - A12A22A21)x1 + u 3 (x1,w)

Çw = s(w)

e = h(x1,w)

(33)

where

h(x1,w) = hc (M21x1, M22 a (x1,w),w) (34)
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and M2 = [M21 | M22]with M21 Î Rnc ´ r . As shown in Theorem 1, (33) also satis® es
R1, and there exists a su� ciently smooth function p (w) that satis® es (21). We ® rst
claim that p (w) also satis® es

0 = h( p (w),w) (35)

In fact, by (24) and (34), we have

lim
t ® ¥ hc (xc (t),w(t) ) = lim

t ® ¥ h(x1 (t),w(t) ) (36)

Thus (33) satis® es the R2, or, what is the same, the trajectories of (33) starting from
the su� ciently small initial states satisfy

lim
t® ¥ h(x1 (t),w(t) ) = 0 (37)

since, by assumption, the closed-loop system (5) satis® es R2. We now recall from the
output regulation theory for the normal system as can be found in Isidori and Byrnes
(1990) that if, in addition to R1, (33) also satis® es R2, then p (w) necessarily satis® es
(35). Now noting that xc (w) and p (w) are related by (23) gives

hc (xc (w),w) = h( p (w),w) = 0 (38)

That is, xc (w) satis® es (30). h

Having established Lemma 1, it is possible to ® nd out the solvability condition of
the output regulation problem for both state feedback and output feedback as
manifested in the following two theorems.

Theorem 2: Under hypotheses (H1) and (H2), the output regulation problem is sol-
vable by state feedback control if and only if there exist su� ciently smooth functions
x (w) , with x (0) = 0, and u (w) , with u (0) = 0, both de® ned in a neighbourhood W of
the origin of Rq satisfying the following:

E
¶ x

¶ w
s(w) = f (x (w),u (w),w) (39)

h(x (w),w) = 0 (40)

Proof:

(Necessity) Assume the state feedback control u = k(x,w) solves the state feed-
back output regulation problem. Then, by Lemma 1, there exists some su� ciently
smooth function xc (w) for w Î W with xc (0) = 0 satisfying (29) and (30) . De® ne
x (w) = xc (w) , and u (w) = k(x (w),w) . Then it is ready to verify that x (w) and u (w)
satisfy (39) and (40).

For su� ciency, observe that, by Hypothesis (H2), there exists a matrix K such
that s (E,A + BK) Î C- , and deg det sE - (A + BK)( )( ) = rank (E) . Suppose con-
ditions (39) and (40) are satis® ed for some x (w) and u (w) . Let

k(x,w) = u (w) + K(x - x (w) )

This controller yields a closed-loop system with xc = x, Ec = E, and fc (xc,w) =
f (x,k(x,w),w) . Then, Requirement R1 is satis® ed since the Jacobian matrix of
fc (xc,0) = f (x,k (x,0),0) at the origin is equal to A + BK. Next, let xc (w) = x (w) .
Clearly, k(xc (w),w) = u (w) . Thus (39) and (40) trivially reduce to (29) and (30). It
follows from Lemma 1 that Requirement R2 is also ful® lled. h
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Theorem 3: Under Hypotheses (H1), (H2) and (H3), the output regulation problem
via output feedback control is solvable if and only if there exist su� ciently smooth
functions x (w) , with x (0) = 0, and u (w) , with u (0) = 0, both de® ned for w Î W , sa-
tisfying the conditions (39) and (40).

Proof:

(Necessity) Assume the output feedback control u = b (z,e) , Ez Çz = g(z,e) solves
the output regulation problem. Then, by Lemma 1, there exists some su� ciently
smooth function xc (w) for w Î W with xc (0) = 0 satisfying (29) and (30). Perform
the partition xc (w) = [x1 (w)¿

x2 (w)¿]¿ such that x1 (w) Î Rn. Let x (w) = x1 (w) , and
u (w) = b (x2 (w),0) . Then it is ready to verify that x (w) and u (w) satisfy (39) and (40).

(Su� ciency) By assumption H2 and H3, there exist matrices H, G1 and G2 such
that

(E,A + BH) and
E 0

0 Iq
,

A - G1C P - G1Q

- G2C S - G2Q
are strongly stable

(41)

Suppose conditions (39) and (40) are satis® ed for some x (w) and u (w) . Let

E 0

0 Iq

Çz1

Çz2

=
f (z1,u (z2) + H(z1 - x (z2) ) ,z2) - G1[h(z1,z2) - e]

s(z2) - G2[h(z1,z2) - e]
u = b (z,e) = u (z2) + H (z1 - x (z2) )

This controller yields a closed-loop system with xc = (x,z1,z2) ,

fc (xc,w) =

f (x,u (z2) + H (z1 - x (z2) ),w)

f (z1,u (z2) + H (z1 - x (z2) ),z2) - G1[h(z1,z2) - h(x,w)]
s(z2) - G2[h(z1,z2) - h(x,w)]

and

Ec =

E 0 0

0 E 0

0 0 Iq

The Jacobian matrix of fc (xc,0) at the origin is given as

Ac =

A BH BK

G1C A + BH - G1C P + BK - G1Q

G2C - G2C S - G2Q

where K = [¶ u /¶ z2]z2=0 - H[¶ x /¶ z2]z2=0.
Some elementary transformation shows that

det(sEc - Ac) = det(sE - (A + BH) )

´ det
E 0
0 Iq

s - A - G1C P - G1Q

- G2C S - G2Q
(42)
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Thus (Ec,Ac) is also strongly stable. That is, requirement R1 is satis® ed.
To verify R2, let xc (w) = [x (w)¿

x (w)¿ w¿]¿. Then it is clear that

hc (xc (w) ,w) = h(x (w),w) = 0 (43)

u (w) = b (x (w),w,0) (44)

Using (43) and (44) and then (39) successively in the following gives

fc (xc (w),w) =

f (x (w),u (w),w)

f (x (w),u (w),w)

s(w)

= Ec
¶ xc (w)

¶ w
s(w)

That is, (29) and (30) are satis® ed. h

Remark 5: It is seen that the solvability of the output regulation problem by
both state feedback and output feedback control relies on the same set of equa-
tions given by (39) and (40). Clearly, this set of equations can be viewed as singu-
lar analogue of what is called regulator equations discovered by Isidori and
Byrnes (1990). For convenience, we will refer to (39) and (40) as singular regulator
equations in the sequel. We also note that the generalized Sylvester equation that
governs the solvability of the output regulation problem for singular linear
systems (Lin and Dai 1996) is a special case of (39) and (40).

5. Output regulation via normal output feedback controller

The output feedback controller constructed in Theorem 3 is also singular due to
the singularity assumption on E. It is known that singular controllers are sensitive to
the variations of initial conditions, and structured uncertainties. Moreover, it is less
easy to realize singular controller physically. Thus it is desirable to synthesize normal
controllers to solve our problem. It turns out that this is possible under an additional
hypothesis:

(H4): (E,B) is normalizable, that is, there exists L Î R m ´ n such that E + BL is
nonsingular.

Theorem 4: Under Hypotheses (H1) to (H4), the output regulation problem via a
normal output feedback controller is solvable if and only if there exist su� ciently
smooth functions x (w) , with x (0) = 0, and u (w) , with u (0) = 0, both de® ned in a
neighbourhood W of the origin of Rq satisfying the conditions (39) and (40).

Proof: The necessity can be shown in exactly the same way as in Theorem 3. For
su� ciency, we ® rst recall from Dai (1989) that Hypotheses (H2) and (H4) implies
existence of the matrices H and L such that

E + BL is nonsingular and (E + BL ,A + BH) is strongly stable (45)

Also, Hypothesis (H3) implies existence of matrices G1 and G2 such that

E 0

0 Iq
,

A - G1C P - G1Q

- G2C S - G2Q
is strongly stable (46)

Now suppose (39) and (40) hold for some x (w) and u (w) . Let
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g (z, Çz1) = u (z2) + H[z1 - x (z2)]- L Çz1 - ¶ x

¶ z2
s(z2) (47)

and

g1 (z, Çz1,e) = E Çz1 - f (z1, g (z, Çz1),z2) + G1[h(z1,z2) - e] (48)

Then it can be veri® ed that

¶ g1

¶ Çz1
(0,0,0) = E + BL

Since E + BL is non-singular by (45), by the Implicit Function Theorem, there exists
a su� ciently smooth locally de® ned function h (z,e) satisfying h (0,0) = 0 such that

g1 (z, h (z,e),e) = 0 (49)

Now de® ne a normal output feedback control law as follows

Çz1

Çz2

=
h (z,e)

s(z2) - G2[h(z1,z2) - e]
u = b (z,e) = g (z, h (z,e) ) (50)

which yields a closed-loop system with xc = [x¿ z¿
1 z¿

2]¿,

Ec =

E 0 0

0 In 0

0 0 Iq

(51)

and

fc (xc,w) =

f (x, b (z,h(x,w) ),w)

h (z,h(x,w) )

s(z2) - G2[h(z1,z2) - h(x,w)]
(52)

We will show that this control law solves the output regulation problem. To this
end, let

N = ¶ h (z,h(x,0) )
¶ (x,z) x=0,z=0

(53)

Then using (49) shows that N satis® es

(E + BL )N = G1C A + BH - G1C P + BK - G1Q[ ] (54)

where K = [¶ u /¶ z2]z2=0 - H[¶ x /¶ z2]z2=0. Morever, we have

Ac 7
¶ fc (xc,0)

¶ xc
|xc=0 =

A BH BK[ ]- BLN

N

G2C - G2C S - G2Q

(55)

We will ® rst show that (Ec,Ac) is strongly stable. For this purpose, let
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T =

In BL 0

0 E + BL 0

0 0 Iq

De® ne

Ec =def
TEc =

E BL 0

0 E + BL 0

0 0 Iq

Ac =def
TAc =

A BH BK

G1C A + BH - G1C P + BK - G1Q

G2C - G2C S - G2Q

Then, (Ec,Ac) is strongly stable if and only if (Ec,Ac) is since T is non-singular.
However, simple transformation gives

det s

E BL 0

0 E + BL 0

0 0 Iq

-
A BH BK

G1C A + BH - G1C P + BK - G1Q

G2C - G2C S - G2Q

= det(s(E + BL ) - (A + BH) ) det s
E 0

0 Il

-
A - G1C P - G1Q

- G2C S - G2Q
.

Thus it follows from (45) and (46) that (Ec,Ac) , hence (Ec,Ac) is strongly stable, i.e.
the closed-loop system satis® es R1.

Next we show the closed-loop system also satis® es R2, or, what is the same,
equations (29) and (30) are satis® ed for some xc (w) . To this end, again let
xc (w) = [x (w)¿

x (w) ¿ w¿]¿. Then equation (30) is trivially satis® ed. Thus equation
(29) can be expanded as

E
¶ x (w)
¶ w

s(w) = f (x (w), b (z (w),0),w) (56)

¶ x (w)
¶ w

s(w) = h (z (w),0) (57)

¶ w
¶ w

s(w) = s(w) (58)

where

z (w) =
x (w)

w
7

z1 (w)
z2 (w) , z1 (w) Î R

n

Clearly, equation (58) is trivially satis® ed. To verify (57), we note that h (´, )́ is
uniquely de® ned by (49). Thus h (z (w),0) is the unique solution of
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g1 (z (w), h (z (w),0),0) = 0 (59)

On the other hand, by the de® nition of h (´, )́ , equation Çz1 = h (z,e) is equivalent to
g1 (z, Çz1,e) = 0, and also we have z1 (w) = x (w) . Thus, ( ¶ x (w) /¶ w)s(w) is the unique
solution of

g1 z (w), ¶ z1 (w)
¶ w

s(w),0 = 0 (60)

It follows from the uniqueness of the solution of both (59) and (60) that (57) holds.
Finally we turn to (56) which is implied by (39) if u (w) = b (z (w),0) can be veri® ed.
But by the de® nition of b (z,e) and using (57) leads to

b (z (w),0) = g (z (w), h (z (w),0) )

= u (w) + H(x (w) - x (w) ) - L
¶ x (w)
¶ w

s(w) - ¶ x (w)
¶ w

s(w) = u (w)

Thus, Requirement R2 is satis® ed by Lemma 1. h

Remark 6: The normal control law (50) evolves from the control law

E 0
0 Iq

Çz1

Çz2
=

f (z1,u,z2) - G1[h(z1,z2) - e]
s(z2) - G2[h(z1,z2) - e]

u = g (z, Çz1) = u (z2) + H[z1 - x (z2)]- L Çz1 - ¶ x

¶ z2
s(z2) (61)

which employs the technique of derivative feedback widely used in singular linear
control problems, see, e.g. Lin and Dai (1996). The normal control law (50) follows
from (61) by eliminating the reliance of u on Çz1 as exposed in the proof of the
Theorem.

Remark 7: In case f (x,u,w) is linear in u, i.e. f (x,u,w) = f1 (x,w) + f2 (x,w)u for
some su� ciently smooth f1 (x,w) and f2 (x,w) . The implicit function h (z,e) can be
explicitly given by

h (z,e) = (E + f2 (z1,z2) L ) - 1 ( f1 (z1, b 1 (z),z2) - G1[h(z1,z2) - e]) (62)

6. Approximation solution of the singular regulator equations

Like normal systems, the key to the existence of either state feedback or output
feedback controller is the solvability of the singular regulator equations (39) and
(40). Due to the nonlinearity of the plant and exosystem, it is di� cult to obtain the
exact solution x (w) and u (w) for the singular or normal regulator equations. Thus an
approximation method must be sought. Following the approach in Huang and Rugh
(1992) that leads to a Taylor series solution of the normal regulator equations, we can
also develop an approximation method for solving the singular regulator equations
in the form of the Taylor series.

Our approach will involve power series representation for the unknown functions
x (w) and u (w) , and this entails the following notation. For any matrix K we will use
the Kronecker product notation

K(0) = 1, K(1) = K, K(i) = K Ä K´´´ Ä K
ifactors

, i = 2, 3, . . . (63)
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Then we can write the problem description in terms of the series expansions

f (x,u,w) =
l ³ 1 i+j+k=l

i, j,k ³ 0

Fijkx(i) Ä u(j) Ä w(k)

h(x,w) =
l ³ 1 i+k=l

i,k ³ 0

Hikx(i) Ä w(k)

S (w) =
i ³ 1

Siw
(i)

(64)

In order to obtain unique representations for the coe� cients in series expansions of
the unknown functions x (w) and u (w) , the following notation will be used. For the
q ´ 1 vector w, let w[l]denote the vector

w[l]= [wl
1 wl- 1

1 w2 ´´´ wl- 1
1 wq wl- 2

1 w2
2 wl- 2

1 w2w3 ´´´ wl- 2
1 w2wq ´´´ wl

q]¿ (65)

Then we seek series of the form

x (w) =
k ³ 1

Xlw[k], u (w) =
k ³ 1

Ulw[k] (66)

such that the singular regulator equations are satis® ed formally. Note that the
dimensions of w[l]and w(l) are, respectively,

q + l - 1

l
´ 1, ql ´ 1 (67)

and that there exist matrices Ml and Nl of appropriate dimensions such that

w[l]= Mlw
(l) , w(l) = Nlw[l] (68)

Substituting (64) and (66) into (39) and (40) and identifying the coe� cients of w[l],
l = 1,2, . . . , yields the following result.

Lemma 2: The power series (66) formally satisfy the singular regulator equations
(39) and (40) if and only if the following generalized Sylvester equation is satis® ed
for l = 1,2, . . . :

EXl Ml

l

i=1
I (i- 1)
q Ä S Ä I (l- i)

q Nl = AXl + BUl + Pl

0 = CXl + Ql

(69)

where

A = F100, B = F010, P1 = P = F001

C = H10, Q1 = Q = H01, S = S1

and, for l = 2,3, . . . ,
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Pl = P +
l

n=2 i+ j+k=l
i,j,k ³ 0

FijkGij
l- nNl

-
l- 1

k=1

Xk Mk
j1+ j2+ ´́ +́ jk=l

j1,j2 ,́ ´́ ,jk ³ 1

Sj1 Ä Sj2 Ä ´´´ Ä Sjk Nl

(70)

Ql = Q +
l

n=2 i+k=l
i,k ³ 0

HikGij
l- n Nl (71)

Gij
m =

0, i = j = 0,m > 0,
1, i = j = 0,m > 0,
d i,j+m , j = 0, i = 1,2, . . . ,

i̧,j+m, j = 0, i = 1,2, . . . ,
m
k=0 d i,i+k Ä j̧,j+m- k, i, j = 1,2, . . . ,

d i,j =
j1+ j2+ ´́ +́ji=l

j1,j2 ,́ ´́ ,ji ³ 1
Xj1 Mj1 Ä Xj2 Mj2 Ä ´´´ Ä Xji Mji (72)

i̧,j =
j1+ j2+ ´́ +́ ji=l

j1,j2 ,́ ´́ ,ji ³ 1
Uj1 Mj1 Ä Uj2 Mj2 Ä ´´´ Ä Uji Mji (73)

Proof: The proof is quite similar to that given in Lemma 5.1 of Huang and Rugh
(1992), and is therefore omitted. h

Note that Xl and Ul depend only on X1, . . . , Xl- 1 and U1, . . . , Ul- 1, so that (69)
provides an iterative sequence of the generalized Sylvester equations. The following
result establishes the solvability condition for these equations.

Theorem 5: There exists a solution (unique if p= m) of (69) for any Pl and Ql,
l = 1,2, . . . , if and only if

rank
A - ¸E B

C 0
= n + p (74)

for all ¸ given by

¸ = i̧1 + ´´´+ i̧l (75)

where i1, ´´´, il Î {1,2,´´´,q}and ¸1,´´´, q̧ are eigenvalues of S.
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Proof: Being a generalized Sylvester equation, (69) is solvable for any (Pl,Ql) if
and only if the rank condition (74) holds for all ¸ in the spectrum of the matrix

Ml

l

i=1
I (i- 1)
q Ä S Ä I (l- i)

q Nl (76)

However, it is shown that the spectrum of the matrix (76) is precisely that described
in the statement of Theorem 5 Huang and Rugh (1992). h

7. Concluding remarks

This paper has extended some existing results of the output regulation problem
for either singular linear systems or normal nonlinear systems to singular nonlinear
systems. A few remarks are in order. First, it is possible to relax Hypotheses H2 and
H3 from strongly stabilizable to plain stabilizableat the cost of resulting in a closed-
loop system whose linearization is stable rather than strongly stable. The response of
such systems is known, however, to exhibit impulsive behaviour. Second, our result
on designing normal output feedback controller relies on the normalizability assump-
tion of (E,B) . It may be interesting to look into the possibility of removing the
normalizability assumption.
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